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Abstract

Aligned nanoclay particles can be distributed randomly in a polymer matrix even at high volume fractions, but randomly oriented particles
cannot be randomly distributed at high volume fractions. Instead a nanocomposite where there are clusters of nearly aligned particles is obtained.
The clusters of nearly aligned particles form an effective particle with lower aspect ratio. This phenomenon which produces a nanocomposite of
less stiffness than might have been expected has implications for the processing of nanoclay polymer composites.

It is shown by comparing two-dimensional to three-dimensional finite element studies that the two-dimensional model, often used because it
is simpler, does not accurately predict the stiffness. The Mori—Tanaka model is shown to give a reasonably accurate prediction of the stiffness
of clay nanocomposites whose volume fraction is less than about 5% for aligned particles but underestimates the stiffness at higher volume
fractions. On the other hand for randomly oriented particles the Mori—Tanaka model overestimates the stiffness of clay nanocomposites.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer/clay nanocomposites are polymeric materials that
are reinforced by nanoclay particles whose dimensions are in
the sub-micron scale; the particles are composed of stacks of
~1 nm thick mono-layers whose in-plane dimensions range
from 100 nm to 1000 nm. The thickness of the stacks depends
upon how well they are intercalated or exfoliated. For en-
hanced functional properties of nanocomposites, full exfolia-
tion is desired.

The Toyota group [1—3] was the first to achieve successful
exfoliation of clay in nylon 6 through in situ polymerization.
They have shown that inserting as little as 4.7 wt% clay into
nylon 6 doubles both elastic modulus and strength. However,
it is the functional properties of nanocomposites that are the
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main driving force in nanocomposite development. Functional
properties such as barrier [4—6], flammability resistance [7]
and ablation performance [8] are all greatly improved by
the addition of small volume fractions of nanoclay. To
find applications for this new class of materials their mechan-
ical properties have to be sufficient to ensure mechanical
reliability.

The established mechanics-based composite stiffness models,
such as the Mori—Tanaka (M—T) [9—12] and the Halpin—Tsai
[13—15], are only dependent on the volume fraction, aspect
ratio of the particles and the elastic constants of both matrix
and particles. The particle size will not affect the stiffness
unless the particles affect the structure and stiffness of the ad-
jacent polymer. Such an effect may be present if the polymer
is semicrystalline, since the particles may affect the orientation
of the lamellar crystallites to give a transcrystalline layer.
However, even if there is a transcrystalline layer adjacent to
the clay particles, Sheng et al. [16] have shown that the effect
is slight.
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Finite element analyses of composites containing high
aspect ratio plate-like particles, although accurate, are not suit-
able as a general method for calculating the stiffness because of
their complexity. The M—T model has a good theoretical basis
since it is based on the equivalent inclusion model of Eshelby
[17,18] and is generally agreed to be superior to the Halpin—
Tsai model particularly for composites with high aspect ratio
particles [19]. However, the M—T model, though an improve-
ment on the dilute particle concentration model of Eshelby,
becomes less accurate at high particle volume fractions where
there is considerable particle interaction. It is the purpose of
this paper to explore the limits of the M—T model by compar-
ing its stiffness predictions with finite element analyses.

A stiffness model does not only depend on the accuracy and
robustness of the technique used, but also on the accuracy of
the elastic constants. However, these constants are not known
very precisely. Even in reasonably well-exfoliated clay nano-
composites the platelets can be made up of a number of inter-
calated silicate sheets and the spacing of the silicate sheets
affects the Young’s modulus and weight/volume relationship
of the effective particle. The Young’s modulus is a continuum
parameter; when the clay exists in a single sheet, its stiffness
in terms of the force—strain relation can be estimated from its
structure, but the assignment of an equivalent thickness to the
sheet so that the concept of stress—strain relationship can be
used is not straightforward. The distribution of the aspect ratio
of the clay particles is usually wide and so the appropriate as-
pect ratio for any model is uncertain. Moreover, the distribu-
tion of clay particles is far from uniform. The clay particles
are usually not fully dispersed so that in typical epoxy/clay
nanocomposites there are clusters of high particle concentra-
tion dispersed in a matrix of low particle concentration. The
stiffness of clustered composite is less than that of the same
volume fraction of particles that are uniformly dispersed
[20]. Thus the accuracy of the modelling of the stiffness of
the nanocomposite is crucially dependent on the properties
of the effective particle. Since it is difficult to accurately deter-
mine the properties of the effective particle, the apparent accu-
racy obtained by using a finite element analysis is largely
illusory. Thus it is preferable to use an analytical model,
such as the M—T model, provided it is reasonably accurate.

Three-dimensional finite element models (FEMs) of nano-
composites containing plate-like particles are difficult espe-
cially if they are randomly oriented and many researchers
such as Sheng et al. [16] have used plane strain two-dimen-
sional FEMs. However, it will be shown in this paper that
two-dimensional FEMs predict a Young’s modulus that differs
significantly from that obtained with three-dimensional FEMs
and should not be used as a basis for deciding whether analyt-
ical models are sufficiently accurate to be used for nano-
composites. Gusev [21] has used a three finite element based
approach to model a composite reinforced by fibers of differ-
ent shape, size and distribution. A range of composite material
properties, mainly those that are governed by Laplace’s equa-
tion such as dielectric constant, but also including the elastic
constants were modelled [21]. In the elastic example exam-
ined, the finite element results were compared with the

Halpin—Tsai [13—15] model (here almost identical to the
M~—T predictions). For a particle volume fraction of 3%,
the Halpin—Tsai considerably overestimated the stiffness for
aspect ratios greater than about 20.

2. Finite element model

Both two-dimensional and three-dimensional finite element
models are presented for aligned and randomly oriented clay
particles which are randomly distributed. To avoid overlong
computational times the representative volume element (RVE)
must be reasonably small. A periodic RVE is often used, where
the particles that are cut by any of the edges (or faces) of the
RVE are continued from the opposite edges (or faces) with
the same orientations. The parts of particles that intersect the
boundary and lie outside the RVE are included in the RVE
on the opposite face of the boundary. If periodic boundary
conditions are used, the size of the RVE that gives acceptable
scatter is minimised Gusev [22]. That is, the mean value of the
elastic constants, for even RVEs containing very few particles,
is close to the exact value for large composite volume. Study-
ing a polymer composite using glass spheres, Gusev [22]
found that the average C;;;, value was less than 1.8% in error
for a RVE containing only 8 spheres. The minimum number of
high aspect ratio plate-like particles in a RVE to obtain a sim-
ilar error is likely to be significantly higher, because the inter-
action volume of a plate-like particle is much larger than
a spherical particle. However, in practice the implementation
of periodic boundary conditions in 3D is difficult and we
have used symmetric boundary which gives results very close
to those obtained from periodic boundary conditions as we de-
scribe below.

The object of this paper is to assess the accuracy of the M—
T model against FEM. The values chosen for the analysis are
not based on any particular nanocomposite, but are representa-
tive of typical values for epoxy nanoclay composites. Thus we
assume that the elastic modulus of clay is 100 times that of the
elastic modulus of the polymer matrix. Since the results are
given in terms of the Young’s modulus of the polymer, the ab-
solute values are not relevant. The Poisson’s ratio of both par-
ticle and matrix is 0.2 and 0.35, respectively. The aspect ratio
of the particles, defined as the ratio of the particle length to the
particle thickness, is assumed to be 50 (or 100 for some sets of
2D calculations). In all models we assume that both the matrix
and the clay particles are isotropic and are linearly elastic. The
particles are assumed to be perfectly bonded to the matrix. The
2D model is subjected to plane stress.

The finite element calculations are conducted using the
commercial software ABAQUS. The elements used are four
node plane stress elements with reduced integration (CPS4R)
for the 2D particles and matrix and 4 node 3D linear tetrahe-
dron elements (C3D4) for the particles and matrix in 3D. The
meshes are shown in Fig. la—d. A uniform strain is applied to
one edge/face of the model as shown in Fig. 2 by applying a
point force on a rigid reference node that is kinematically cou-
pled with the “loaded” edge/face in the axial direction so that
nodes along the loaded edge/face have to exactly follow the
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(c)

(b)

Fig. 1. Mesh details of the model for (a) 2D aligned particle distribution, (b) 2D randomly oriented-particle distribution, (c) 3D aligned particle distribution, and
(d) 3D randomly oriented-particle distribution. Particle volume fraction 5%, the particle aspect ratio = 50, E/Ey, = 100, v, = 0.35, v, =0.2.

displacement incurred by the reference node. The stress is cal- better than applying a uniform displacement directly to the
culated by dividing the reaction force applied to the reference edge/face of the model, as the calculation of the average stress
node by the area of the loaded edge/face. This procedure is would be more cumbersome.
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Fig. 2. Symmetric boundary conditions for both 2D and 3D FE models. For the 2D model, the bottom and left edges are lines of symmetry sharing one point that is
pinned. The right edge is subjected to a uniform displacement, whereas the top edge is free of traction and any displacement constraint. For the 3D model, bottom,
left and back faces are plane of symmetry. Their point of intersection is fully pinned. A uniform strain is applied to the right face, whereas the front and top faces
are free of traction and displacement constraint. In either 2D or 3D model, the displacement is applied to a rigid reference node that is kinematically coupled with
the right edge/face. Thus, the displacement incurred by the right edge/face is exactly the same as that applied to the rigid point.
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Each calculation point is averaged over 9—10 runs corre-
sponding to 9—10 random distributions of particles in the
RVE. Individual particles, generated inside a 2D rectangle or a
3D cube, are merged with the matrix to make up the composite
but yet retaining the geometrical boundaries with the matrix.
The model after merging is a single entity but the elements
forming the particles have different properties to those of the
matrix.

2.1. Particle generation

In the 2D model the particles are 2D slender rectangles (as-
pect ratio 50 and 100). Fig. 3a and b shows examples of the
distribution of particles in the matrix for both the aligned
and random arrangement of particles. The RVE for the aligned
particles is rectangular and square for the randomly oriented
particles.

In the 3D model, the particle is a square plate for the
aligned particles (Fig. 4a), but a disc shaped particle was used
for the randomly oriented case. We modelled the particles as

(a)

|
|

(b)

Fig. 3. (a) Two-dimensional representative volume element (RVE) including
aligned particles randomly distributed. (b) Two-dimensional representative
volume element (RVE) including randomly oriented particles randomly dis-
tributed. In both cases, particles that cut one of the boundaries are split into
two, with the portion, that would extend beyond the boundary, moved to the
opposite boundary. The volume fraction of the particles is 5%, the particle
aspect ratio = 50.

discs (Fig. 4b) in the randomly oriented case because the
generation of non-intersecting randomly distributed particles
is simpler.

For the case of the random distribution of aligned particles,
a random generator is used to create the coordinates of the par-
ticle centres for both 2D and 3D configurations. A condition
for non-overlapping and non-intersecting particles is enforced.
The distribution of the 2D randomly oriented particles is gen-
erated by randomly creating the coordinates of a particle cor-
ner and assigning a random angle that the particle makes with
the x-axis. In the 3D configuration, the centres of the discs and
the components of the normal vector to the disc plane are ran-
domly generated. In all models, a sequential generation of par-
ticles is performed. Once a particle is generated, a condition
for non-overlap and non-intersection with previously gener-
ated particles is checked. If any of these conditions is violated
another particle is generated and the conditions are again
checked. This procedure is repeated until the whole set of
particles are generated.

We have used this same arrangement for the case where
symmetric (non-periodic) boundary conditions are used to
ensure uniformity of particle distribution over the entire area/
volume of the RVE. The size of the RVE can be very critical
in obtaining accurate results; the sensitivity to the RVE dimen-
sions is highlighted in Section 2.4.

2.2. Periodic boundary conditions

The periodic boundary conditions are applied in the 2D
models for both aligned and random cases as follows:

(RE)
u(TE) = u(BE), (1)
(

where RE, LE, TE, BE and ¢; and 6, are the right, left, top,
bottom edges and the axial and transverse displacements, re-
spectively. The axial and transverse forces are linearly related
to the applied (axial and transverse) displacements as:

F,= 01(51 +6625 (2)
Fy, =6, + 1y,

where «, 3, v, 1 are constants. The prime interest is in the elastic
modulus in the axial direction, which is the direction of the par-
ticles in the aligned case, and in this case only an external force
in the axial direction is applied. The transverse force should then
be zero. To enforce this condition, two separate finite element
calculations are carried out and the coefficient constants in Eq.
(2) are determined. By setting the transverse force, in Eq. (2),
to zero, the ratio of the axial to the transverse displacements
can be determined. The displacements can now be applied.
There are a number of issues related to applying periodic
boundary conditions with ABAQUS. One complication en-
countered is that the number of elements and particularly
nodes has to be the same along the two opposite edges. This
necessitates creating a partition at the proximity of these
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Fig. 4. (a) Three-dimensional representative volume element (RVE) including aligned clay platelets randomly distributed. The volume fraction of particles is 5%.
Particles that cut one or two boundary faces are split into two or four parts with those remaining (that would otherwise be outside the RVE) relocated to opposite faces.
(b) Three-dimensional representative volume element (RVE) including randomly oriented clay discs randomly distributed. The volume fraction of particles is 5%.

edges, so we can enforce the same element number and sizes to
be generated along opposite edges. A further complication of
applying periodic boundary conditions is that ABAQUS code
orders the nodes according to the node numbers and not
according to the co-ordinations. The consequence of this
ordering is that the enforced kinematic constraint, whereby 2
nodes on two opposite edges will be forced to have same dis-
placement along certain direction, will be employed on nodes
having different mapping positions, that is, different relative
locations along their corresponding edges. To overcome this
problem, a separate simulation has to be carried out where
the outputs are the node numbers and co-ordinations. The
nodes are then ordered according to their locations — using a
FORTRAN program — along the edges and the periodic
boundary conditions are then applied at individual nodes
instead of using a whole node set. In general the application
of the periodic boundary condition is very involved. The
techniques described above to overcome difficulties in apply-
ing periodic boundary conditions in 2D cannot be used in
3D. Similarly to the 2D case, the finite element software,
ABAQUS, does not offer the option of specifying same num-
ber of nodes with one-to-one coordinate correspondence on
opposite faces in 3D. The only possibility for enforcing this
condition is to produce a thin partition at the vicinity of all
faces, which is a very tedious process. However, even if this
is accomplished the presence of particles randomly oriented
in the model makes the generation of a mesh using the sweep
technique impossible and instead a free mesh with tetrahedron
elements must be chosen. The latter option is, however, not
favourable as it is not possible to have same number of ele-
ments in two opposite faces with the nodes located in the
same equivalent positions when using tetrahedron elements.
Therefore, for 3D we have used symmetrical boundary
conditions.

2.3. Symmetrical boundary conditions

Simple symmetrical boundary conditions are used for a
RVE stressed only in an axial direction. Two edges (three
faces) intersecting at a point are chosen as the lines (planes)
of symmetry for the 2D case (3D case). Displacement bound-
ary constraints are applied to these edges/faces so that no dis-
placements occur normal to the edges/faces. Points on these
edges/faces are, however, free to slide along them. In the axial
direction the edge/face opposite the symmetrical edge/face is
given a constant displacement in the axial direction. The other
non-symmetrical edges/faces have zero stress. Except for the
edges/faces which are subjected to the displacement control
described above, all other edge/faces are free of any displace-
ment constraints. Thus the boundary conditions for the 2D
case with a normal strain applied in the x direction are

u(LE) =0,
v(BE) =0, (3)
u(RE) = 4.

In addition, the top edge is free of any displacement con-
straint. All edges are free of shear traction and the top edge
is free of normal traction as well. In the 3D case, the boundary
conditions with a normal strain applied in the x direction are as
follows:

w(BKF) = 0, (4)

where LF, BF, BKF and RF stand for left face, bottom face,
back face and right face. All other faces are free of any dis-
placement or traction constraints.
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Table 1
Differences between 2D FEM results using periodic boundary conditions with
those using symmetric boundary conditions

Volume Average E/E, Average E./E, Differences
fraction (periodic) (symmetric) (%)
1% 1.3522 1.34371 0.63
3% 2.1167 2.11963 0.14
5% 3.09225 3.08009 0.39
10% 5.8497 5.722454 2.18

Both aspect ratio and ratio of particle to matrix elastic modulus, E./E,,, are
100. Poisson’s ratios of the particle and matrix materials are 0.2 and 0.35,
respectively.

We have carried out 2D finite element calculations for
aligned particles using both periodic and symmetrical boundary
conditions. Displacement is applied to the right edge and the re-
sultant average stress is inferred. The particle aspect ratio is
taken to be 100 and the ratio of the particle elastic modulus to
the matrix elastic modulus is set at (E,, /Ey,) = 100. The volume
fraction of the particles is varied from 1% to 10%. The differ-
ences in the elastic constant calculated from finite elements us-
ing periodic and symmetric boundary conditions are given as a
function of volume fraction in Table 1. Good agreement is
shown between both sets of finite element results. This result
implies that using symmetric boundary conditions has very little
effect on the accuracy of the results and hence there is no point
of using the more complicated periodic boundary conditions.

2.4. RVE size sensitivity

We have carried out several calculations for the aligned
particles both in 2D and 3D configurations using 10, 30 and
100 particles for a volume fraction of 1% using symmetrical
boundary conditions. These results are given in Table 2. For
both 2D and 3D simulations, the results are insensitive to the
RVE size provided more than 30 particles are within the RVE.
Again this result proves the validity of using symmetric
boundary conditions. In the subsequent analysis we have
employed RVEs that contain 50—100 particles and have
used symmetric boundary conditions.

3. Mori—Tanaka model

The M—T model, based on the equivalent inclusion of
Eshelby [17], models the clay particle as an oblate spheroid,
whereas in the finite element model we have assumed that
the particles have constant thickness. Steif and Hoysan [23]
have defined an elastic reinforcement factor by:

Table 2
Effect of the number of particles in the representative volume element on the
finite element results

Number 2D FEM Standard 3D FEM Standard

of particles results deviation (2D) results deviation (3D)
10 1.216338 0.009794 1.255076 0.030341

30 1.20392 0.009213 1.27623 0.013438

100 1.210608 0.004213 1.271925 0.00721

Ep/Em =1 +/‘{Vpa (5)

where E, is the particle elastic modulus, E,, is the matrix elas-
tic modulus and v, is the particle Poisson’s ratio. They com-
pared the elastic reinforcement factor, A of cylinders and
ellipsoids albeit for a low aspect ratio of 4. They showed
that the aspect ratio of an ellipsoid, which had the same rein-
forcement factor as a rod, was less than the ellipsoid inscribed
within the rod but greater than the ellipsoid that had the same
length and volume as the rod. Since the rod diameter is greater
than the average diameter of the inscribed ellipsoid, but is
smaller than the ellipsoid of the same length and volume,
shear lag theory qualitatively supports this result. However,
the advantage of the M—T model, as a simple model to apply,
is lost if attempts are made to improve on it empirically. Here
the expressions given by Tandon and Weng [11] for the M—T
model have been used to calculate the elastic modulus for
aligned particles and the expressions of Wang and Pryz [12]
for the randomly oriented particles.

4. Results
4.1. Aligned particles

Finite element simulations are carried out for the aligned
particles for 2D and 3D configurations. Figs. 5 and 6 show
the finite element results of the composite elastic modulus,
E., normalized by the matrix elastic modulus, E,,,, as a function
of the volume fraction of clay particles and the predictions of
the M—T model for particle aspect ratios of 100 and 50, re-
spectively. As shown in Fig. 6, the 2D FEM results are consis-
tently lower than those for 3D, hence testing the accuracy of
the M—T model should not be made on the basis of 2D models
as has frequently been the case. As shown for the case of par-
ticle aspect ratio of 50, the M—T model is very close to the 3D
FEM results for volume fractions of less than 5%. For higher
volume fraction, however, the M—T model significantly un-
derestimates the 3D FEM results. The difference between

E 6. i
E, Mori-Tanaka Model e

0 T T T
0 2 4 6 8 10

Clay volume fraction (%)

Fig. 5. Results of the ratio of the composite elastic modulus E, to the matrix
elastic modulus E,,, versus filler volume fraction. Both Mori—Tanaka and 2D
FEM results, for aligned particles randomly distributed, are illustrated for
comparison. Particle aspect ratio AR = 100, Ey/E,, = 100, v;, = 0.35, v, = 0.2.
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Fig. 6. Comparison of Mori—Tanaka, 2D and 3D FEM results of the composite
to matrix elastic modulus ratio E/E,, versus clay volume fraction for aligned
particles randomly distributed. Aspect ratio AR = 50, E/E,, = 100, vy, = 0.35,
vp=0.2.

the finite element results and the M—T model as function of
volume fraction are given in Table 3.

4.2. Random particles

The composite elastic modulus, E., normalized by the ma-
trix elastic modulus, £, as a function of the volume fraction
of clay particles of both the finite element and the M—T model
for the randomly oriented particles is shown in Fig. 7 for par-
ticle aspect ratio of 100 and in Fig. 8 for particle aspect ratio of
50. The elastic modulus obtained from the 2D finite element
simulation again significantly underestimates the elastic mod-
ulus obtained from the 3D simulation (Fig. 8). There were dif-
ficulties in performing 3D FEM simulations for volume
fraction of 10%. The problem is that, with a random orienta-
tion, it is impossible to generate particles that do not intersect.
In practice it means that a fully exfoliated and randomly ori-
ented polymer/clay composite cannot be processed for volume
fractions greater than about 5% which agrees with experiment.
Therefore the 3D finite element results could not be obtained
for greater than 5% volume fraction. The M—T model overes-
timates the elastic modulus and the difference between it and
finite element simulation is given in Table 3.

5. Discussion

A 3D configuration should be used to model any property
of a composite. However, some researchers have used 2D

Table 3

Mori-Tanaka Model

Clay volume fraction (%)

Fig. 7. Comparison of Mori—Tanaka, 2D finite element results of the compos-
ite elastic modulus normalized by the matrix elastic modulus, E/E,, as a func-
tion of clay volume fraction for particles randomly distributed in all direction.
The calculations are performed for particle to matrix elastic modulus ratio of
100. The particle aspect ratio is 100. The particle and matrix Poisson’s ratios
are 0.2 and 0.35, respectively.

models to approximate the behaviour of composites. We
have shown by performing both 2D and 3D FEMs that the
2D FEM cannot be used to accurately predict the stiffness
of a nanoclay polymer composite. As we have demonstrated
that 2D results are consistently lower than 3D results, we be-
lieve that the better agreement of 2D FEM results with exper-
imental results as compared to M—T prediction, reported by
Sheng et al. [16], is due to the artefact that using 2D model
will necessarily give lower values of elastic modulus. In our
analysis we have compared 3D FEM with the M—T model
for both aligned and random cases. In the aligned case, we
have shown that at high clay volume fraction, the 3D FEM re-
sults are progressively larger than the M—T predictions. It is
believed that this underestimate by the M—T model is due
to the interaction between clay particles, caused by their
high aspect ratio. The interaction between particles, which be-
comes more important for the higher clay contents, is not
modelled by M—T model, which is most accurate for dilute
systems. Sheng et al. [16] have very well explained the conse-
quences of two particles approaching each other. If two parti-
cles are at approximately the same height and are close to each
other in the axial direction, they interact with each other such
that they form an equivalent effective particle with higher as-
pect ratio that will contribute to higher stiffening.

With randomly oriented particles the M—T model results
clearly overestimate the elastic modulus and the difference

Comparison between M—T predictions and 2D and 3D finite element results for both aligned and random cases

Volume fraction Mori—Tanaka aligned 2D FEM aligned

3D FEM aligned

Mori—Tanaka random 2D FEM random 3D FEM random

1% 1.31 1.2106075 1.288233
3% 1.901 1.66514 1.86094
5% 2.463444 2.20872 2.575
10% 3.79 3.86137 4.535

1.14 1.068075 1.150495
1.43 1.22595 1.3469
1.73 1.3837 1.55955
2.5 1.6595

The particle aspect ratio is 50. The ratio of particle to matrix elastic modulus is 100. The Poisson’s ratios of particle and matrix materials are 0.2 and 0.35,

respectively.
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Fig. 8. Comparison of Mori—Tanaka, 2D and 3D finite element results of the
composite elastic modulus normalized by the matrix elastic modulus, E/E,,, as
a function of clay volume fraction for particles randomly distributed in all
direction. For clay volume fraction higher than 1%, the Mori—Tanaka results
are clearly higher than finite element results. The calculations are performed
for particle to matrix elastic modulus ratio of 100. The particle aspect ratio
is 50. The particle and matrix Poisson’s ratios are 0.2 and 0.35, respectively.

increases with increasing volume fraction. It might be ex-
pected that the interaction that has led to the M—T model
underestimating the stiffness for the aligned case would do
the same for the randomly oriented case. Our results show
that this is not the case. The M—T model assumes that the vol-
ume fraction is small so that there is no interaction between
particles. However, with randomly oriented particles there is
not only strong interaction between particles at the higher vol-
ume fractions, but also the randomness of the orientation is af-
fected. At higher volume fractions the particles tend to stack
together on top of each other to form clusters where the particle
orientation is similar. These clusters form effective particles of
lower aspect ratios. In the 2D configuration, particles have to
rearrange on one plane and clustering of parallel particles is
more likely, as is clearly shown in Fig. 9. This particle cluster-
ing is particularly noticeable at high volume fractions and
causes a decrease in stiffness. Thus, the interaction between
particles that caused an increase in stiffness as compared with
M~—T model for the aligned case has now caused a decrease in
stiffness. This phenomenon is not limited to the model, but also
will affect the elastic modulus of real polymer/clay nanocom-
posites. If attempts to produce a fully exfoliated nanocomposite
with random orientation succeed at high volume fraction
then clusters of particles of similar orientation will form and
the elastic modulus will be less than that might have been
expected.

In summary, the 2D FEM results are consistently lower than
the 3D FEM results for both aligned and randomly oriented
particles. This difference in behaviour is because, in 3D there
is stiffening in the both axial and transverse directions,
whereas in 2D stiffening can only occur in the axial direction.
The stiffening in the transverse direction induces a lower
Poisson’s ratio due to the lower transverse strain which con-
tributes to the increase of the overall stiffening of the compos-
ite. The comparison of the M—T prediction with 3D FEM
results has revealed two different phenomena depending on

Fig. 9. Particle distribution for the random 2D FE model at particle volume
fraction of 10%. A few circles are drawn to highlight examples of parallel
stacking of particles. These stacks form effective particles of small aspect ratio
which decrease the capability of the composite stiffening by the introduction
of clay particles of very high stiffness.

whether the particles are aligned or randomly distributed. In
the aligned case, M—T model gives a very good prediction
of the elastic modulus for the practical range of clay volume
fractions (1—5%). At larger volume fractions, M—T model
underestimates the elastic modulus, since it does not account
for the interaction between particles. The 3D FEM, however,
does model the interaction between particles and therefore
predicts a higher composite elastic modulus. The increase of
the stiffening effect is due to the formation of some effective
particles with higher aspect ratios. The random generation of
the aligned particles may cause one particle to be in very close
proximity to another particle. The region of the matrix
enclosed between the particles is highly constrained so that
it behaves as if it were almost an integral part of the two par-
ticles. The consequence is that an effective particle is formed
with higher aspect ratio and therefore a further increase in
stiffness. This observation suggests that M—T model is limited
to low volume fraction up to 5%.

For the case of randomly oriented particles, however, the
random distribution causes formation of clusters of nearly par-
allel particles. The condition that particles do not intersect,
combined with the fact that the particles can be oriented in any
direction, causes some of the matrix to be free of any particles.
As the matrix between a stack of nearly parallel particles is
highly constrained, the whole cluster of particles forms an ef-
fective particle with much lower aspect ratio. This kind of in-
teraction is not considered in the M—T model and hence there
is limitation to the M—T model when considering distribution
of randomly oriented particles. It is due to this real phenome-
non that the M—T model consistently overestimates the 3D
FEM results.



K. Hbaieb et al. | Polymer 48 (2007) 901—909 909

6. Conclusions

Two-dimensional models do not predict the elastic modulus
of real polymer/clay nanocomposites accurately.

If the particles are aligned the M—T model will accurately
predict the elastic modulus up to volume fractions of about
5% but will underestimate the elastic modulus at higher volume
fractions.

Fully exfoliated randomly oriented polymer/clay nanocom-
posites cannot be processed at high volume fractions but clus-
ters of particles with nearly the same alignment form. The
elastic modulus of such nanocomposites is less than that might
at first be expected and here the elastic modulus is overesti-
mated by the M—T model.
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